Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 95, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622726

ABSTRACT

Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.


Subject(s)
Microglia , Sex Characteristics , Animals , Female , Male , Mice , Gene Expression , Microglia/metabolism
2.
Res Sq ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496602

ABSTRACT

Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.

3.
Glia ; 71(7): 1699-1714, 2023 07.
Article in English | MEDLINE | ID: mdl-36951238

ABSTRACT

Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.


Subject(s)
Epilepsy , Microglia , Humans , Brain , Seizures/drug therapy
4.
bioRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945556

ABSTRACT

Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.

5.
Nat Commun ; 12(1): 5289, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489419

ABSTRACT

Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12-/- and PANX1-/- mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.


Subject(s)
Brain/blood supply , Connexins/genetics , Microglia/metabolism , Myeloid Cells/metabolism , Nerve Tissue Proteins/genetics , Receptors, Purinergic P2Y12/genetics , Animals , Brain/cytology , Brain/diagnostic imaging , Brain/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Count , Cerebrovascular Circulation/physiology , Connexins/deficiency , Electrodes, Implanted , Female , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Knockout , Microglia/cytology , Myeloid Cells/cytology , Nerve Tissue Proteins/deficiency , Neuroimaging/instrumentation , Neuroimaging/methods , Receptors, Purinergic P2Y12/deficiency , Receptors, Purinergic P2Y12/metabolism , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...